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1. INTRODUCTION

Iterative learning control (ILC) arose from research aimed at increasing the accuracy of repetitive
operations performed by robots [1], such as pick-and-place operations. Early results in this actively
developing area can be found, e.g., in the survey papers [2, 3], with more recent results in, e.g., [4].
Currently, ILC designs are effectively used in additive manufacturing, in particular in high-precision
multilayer laser deposition installation [5, 6], in medical robots for the rehabilitation of patients who
have suffered a stroke [7, 8], in ventricular support devices [9], and in numerous other applications.

The class of systems that ILC can be applied to are those that iteratively execute the same
finite-duration task. An example is a robot operating in a pick-and-place mode, where it collects a
payload from a specified location, transfers it over a finite duration, deposits it, and then returns
to the starting location to repeat this sequence of tasks. Each execution, or trial, is of a finite
duration, termed the trial length. Once a trial is complete, all the information generated over the
trial length is available to update the subsequent trial’s control signal, highlighting the iterative
nature of ILC. Batch processing is extensively used in chemical processing, where the same finite-
duration operation is applied to a sequence of objects with a time gap between the end of processing
one batch and the start of processing the next. Examples in this last area, generally known
as batch processing, include manufacturing chemicals, pharmaceuticals, consumer products, and
bioproducts. Since batch processes are repetitive, ILC can be applied, e.g., [10].

Consider an application where a reference trajectory is known. In the pick-and-place operation,
this trajectory represents the ideal path for the robot to follow in each trial. The error between
this trajectory and the trial’s output forms a sequence of trial errors. The control design problem
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involves the construction of a sequence of trial inputs. These inputs are designed to guide the
robot’s movement so that the error sequence converges (in the trial number) to zero or within a
specified tolerance. The response over the trial length can be assessed based on knowledge of the
application under consideration on a particular trial.

As is well known, two-step methods such as the heavy ball method and the conjugate gradient
method can significantly speed up the convergence of gradient descent algorithms in optimization
problems [11–13]. In this paper, the problem investigated is the speed-up of the trial-to-trial error
convergence through a control law where, on any trial, the input is an explicit function of the
input used on the previous trial and other data from this trial. The analysis uses the heavy ball
method [11], and the key idea here is the similarity of the structures of gradient descent and ILC.

Other strategies for using data from previous trials have been considered in the literature to
speed up learning error convergence. In particular, there has been research on ILC design, where
information from a finite number, greater than one, trials is used to generate the input for a
subsequent trial; for example, see [14–20]. ILC laws that use control inputs from two or more
previous trials to compute the input for the subsequent trial are termed higher-order laws. In these
earlier studies, information from past trials is included using heuristic approaches. In general, these
approaches proceed by first defining the structure of the ILC update law. Then, the parameters
of this law are found using a trial-to-trial error convergence condition. Selecting the number of
previous trials for the most significant effect is still an open research problem.

In [21], an ILC law based on Nesterov’s method was described, but the convergence rate achieved
was lower than that established in [22]. One reason for this is the use of a causal ILC law. In ILC
systems, all data generated during a current trial are available to compute the control law for the
subsequent trial. As one example, for discrete dynamics at a sample instant p, data generated on all
previous trials at sample p+λ can be used. Moreover, as is known [2], neglecting such information
may impact the benefits of using an ILC law. The advantages of using higher-order laws are still
an open question.

Throughout this paper, the notation for variables is of the form hk(p), 0 � p � N − 1, where
h is the vector or scalar-valued variable under consideration, the integer k � 0 is the trial number,
and N denotes the (finite) number of samples along the trial (N times the sampling period gives
the trial length). Also, � 0, ≺ 0, � 0, and � 0 denote, respectively, a symmetric positive define
matrix, a symmetric negative definite matrix, a symmetric positive semi-definite matrix, and a
symmetric negative semi-definite matrix.

2. PROBLEM FORMULATION

The systems considered are described by the following state-space model in the ILC setting on
trial k :

xk(p + 1) = Axk(p) +Buk(p),

yk(p) = Cxk(p), 0 � p � N − 1, k � 0, (2.1)

where xk(p) ∈ R
n is the state vector, and uk(p) ∈ R and yk(p) ∈ R are the input and output scalar

variables, respectively. In the class of problems under consideration, the variable k is usually termed
the trial number (trial for short), and yk(p) is the trial profile. The matrices A, B, and C are known
and, by assumption, CB �= 0. This assumption can be removed, e.g., using the result of [23] but is
retained here for ease of presentation. The boundary conditions have the form xk(0) = x0, k � 0,
where x0 is given (on completing a trial, the system resets to the original state); u0(p) is given
and bounded, and for k � 1, it is calculated using an updating law described below. Also, the
generalization to multiple input and output systems with the same input and output dimensions is
straightforward.
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Let the system be completely controllable and observable, and let the variable yk(p) at each
trial k be available for measurement. The state vector is estimated using a full-order asymptotic
observer

x̂k(p + 1) = Ax̂k(p) + Buk(p) + G(yk(p) − Cx̂k(p)), x̂k(0) = x0, 0 � p � N − 1, k � 0, (2.2)

where the matrix G is chosen by any known method such that the estimation error satisfies the
condition

x̃k(p) = xk(p) − x̂k(p) → 0

as p→ ∞.

Remark 1. Under the specified initial conditions, the observer accurately reconstructs the state
vector. If x0 is not available to the observer and or changes after a particular trial, the response
of the estimation error will lead to a decrease in accuracy. This case requires further investigation
and is left as an open research problem.

Let yref(p), 0 � p � N − 1, yref(0) = Cx0, denote a desired reference trajectory for (2.1). Then
the error on trial k is

ek(p) = yref (p) − yk(p). (2.3)

The ILC design problem is to construct a sequence of trial inputs {uk} such that for 0 � p � N−1,
the following conditions on the error ek(p) and input uk(p) hold:

|ek(p)| � κρk, κ > 0, 0 < ρ < 1, (2.4)

lim
k→∞

|uk(p)| = |u∞(p)| <∞, (2.5)

where, in some parts of the literature, u∞(p) is termed the learned control. In ILC applications,
the trial length is finite; hence, it is possible to achieve trial-to-trial error convergence (in k) for
unstable examples (in p). Two options then exist: a) design a stabilizing feedback control law
and then apply the ILC law to the resulting controlled dynamics, or b) design a control law that
simultaneously enforces trial-to-trial error convergence and regulates the dynamics along the trials.
In the latter class of designs, the route is to treat ILC as a 2D system where the directions of
information propagation are from trial to trial (k) and along the trial (p), respectively.

3. CONVERGENCE ANALYSIS AND DESIGN

The lifted model approach of ILC design for discrete-time systems involves the use of supervec-
tors [14]. As the trial length is finite, the values of a variable over the trial length can be assembled
into a column vector, e.g., for the input Uk = [uk(0) . . . uk(N − 1)]T . As a result, trial-to-trial
updating of variables can be expressed in standard difference equations. This approach can lead
to matrices of very large dimensions. Moreover, feedback control must be applied in many cases to
regulate the dynamics along a trial. An alternative represents the dynamics as a discrete repetitive
process [24], a particular form of 2D systems. In this setting, it is possible to simultaneously design
for trial-to-trial error convergence along the trial performance. This paper uses this latter setting
for analysis and design, using the incremental variables

ηk+1(p + 1) = xk+1(p) − xk(p), η̂k+1(p + 1) = x̂k+1(p) − x̂k(p),

η̃k+1(p + 1) = x̃k+1(p) − x̃k(p), 0 � p � N − 1, k � 0, . . . .
(3.1)
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Using (2.1), (2.2), (2.3) and these incremental variables gives the following description of the
dynamics:

η̃k+1(p+ 1) = (A−GC)η̃k+1(p),

η̂k+1(p+ 1) = GCη̃k+1(p) +Aη̂k+1(p) +BΔuk+1(p− 1), (3.2)

ek+1(p) = −CGCη̃k+1(p) − CAη̂k+1(p) − CBΔuk+1(p− 1) + ek(p),

where Δuk+1(p − 1) = uk+1(p − 1) − uk(p − 1). In ILC design, the most common starting point
is to specify that the input for the subsequent trial is the sum of the previous trial input plus a
correction term (update law), where previous trial information is used. At the end of any trial,
all information from all previous trials is available for use in constructing the control input for the
subsequent trial. Many designs use only previous trial data, but the question is: would the use of
a finite number, greater than one, of previous trials, be beneficial? This paper considers a control
law that uses the control signals from the previous two trials and an optimization procedure to
speed up the trial-to-trial error convergence.

The ILC law for (3.2) has the following structure:

uk+1(p− 1) = uk(p− 1) + Δuk+1(p − 1). (3.3)

Hence, the problem is to find an update law Δuk+1(p− 1) such that the convergence conditions (2.4)
and (2.5) hold. Let this law be defined by

Δuk+1(p− 1) = αΔuk(p − 1) + β∇
(

1

2
ek+1(p)

2
)

+ γ[Δuk(p− 1) − Δuk−1(p− 1)], (3.4)

where

∇
(

1

2
ek+1(p)

2
)

=
∂

∂Δuk+1(p− 1)

(
1

2
ek+1(p)

2
)
. (3.5)

The update law (3.4) corresponds to the heavy ball method [11] in optimization theory. This
simplest two-step method accelerates the convergence of gradient descent and, as will be shown,
the same effect is achieved when the ILC law with the update term (3.4) is applied. Moreover, it is
one option for using data beyond the previous trial in an ILC law. Other possibilities are discussed
later in the paper.

Remark 2. In the original paper [11] α = 1, but in the application considered (3.4) will be
combined with the system dynamics (3.2) and, in contrast with [11], the argument Δuk+1(p − 1)
is parameterized by the variable p. Hence, the parameters α, β, and γ ensuring convergence may
differ from those recommended in [11].

Due to the last equation of (3.2), the expression under the derivative sign in (3.5) can be written
as

1

2
ek+1(p)2 = [−CGCη̃k+1(p) − CAη̂k+1(p) − CBΔuk+1(p− 1) + ek(p)]

T

× [−CGCη̃k+1(p) − CAη̂k+1(p) − CBΔuk+1(p− 1) + ek(p)].

Calculating the derivative of the right-hand side with respect to Δuk+1(p− 1) gives

∇
(

1

2
ek+1(p)

2
)

= (CB)2Δuk+1(p− 1) + CBCAη̂k+1(p) +CBCGCη̃k+1(p) − CBek(p).
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Substituting this expression into (3.4) after simple transformations, yields

Δuk+1(p− 1) = K1Δuk(p− 1) +K2CGCη̃k+1(p) +K2CAη̂k+1(p)

−K2ek(p) −K3Δuk−1(p − 1),
(3.6)

where

K1 =
α+ γ

1 − β(CB)2
, K2 =

βCB

1 − β(CB)2
, K3 =

γ

1 − β(CB)2
.

Further, to apply the technique of linear matrix inequalities (LMIs), K1,K2, and K3 will be used
instead of the initial parameters α, β and γ. Introducing

ζk(p) = η̃k+1(p), ξk(p) = η̂k+1(p), Δūk(p) = Δuk(p − 1)

and substituting (3.6) into (3.2) give

ζk(p+ 1) = (A−GC)ζk(p),

ξk(p+ 1) = (I +BK2C)GCζk(p) + (I +BK2C)Aξk(p)

+BK1Δūk(p) −BK3Δv̄k(p) −BK2ek(p),

Δūk+1(p) = K2CAξk(p) +K1Δūk(p) −K3Δv̄k(p) −K2ek(p), (3.7)

Δv̄k+1(p) = Δūk(p),

ek+1(p) = −C(I +BK2C)GCζk(p) − C(I +BK2C)Aξk(p) − CBK1Δūk(p)

+ CBK3Δv̄k(p) + (1 + CBK2)ek(p).

In (3.7), the vectors ζk(p) and ξk(p) evolve in p, the along-the-trial variable, and Δũk(p), Δv̄k(p),
and ek(p) evolve in k, the trial-to-trial variable. Systems with this type of dynamics are known as
discrete linear repetitive processes [24]. These processes make a series of sweeps through dynamics
defined over a finite duration. Once each sweep, termed a trial, is complete, the system resets to
the starting location and is ready for the start of the subsequent trial. The unique feature is that
the output on any trial contributes to the dynamics of the next one, which can result in oscillations
that increase from trial to trial and cannot be controlled by standard control action. A stability
theory for the case of linear dynamics has been developed [24] and applied to ILC design with
experimental validation, e.g., [25].

As in stability analysis and control law design for standard linear systems theory, one approach
to the same design problem for the dynamics considered in this paper would be to use a suitably
constructed Lyapunov function, which should be constructed from the sum of terms in the trial-
to-trial propagation and the along-the-trial dynamics, respectively. But the two equations in (3.7)
are coupled and hence the gradient of the Lyapunov function can only be found if the solutions
to these equations are available, which is a very stringent requirement, and instead a vector Lya-
punov function must be used and the gradient replaced by the divergence, see [26] for the required
background. (In the case of linear dynamics, the stability analysis methods in [24] and [26] are
equivalent.)

In this paper, the vector Lyapunov function for dynamics described by (3.7) has the form

V (ξ̄k(p), ēk(p)) =

[
V1(ξ̄k(p))

V2(ēk(p))

]
, (3.8)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024
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where ξ̄k(p) = [ζk(p)
T ξk(p)

T ]T , ēk(p) =
[

Δūk(p) Δv̄k(p) ek(p)
]T

, V1(ξ̄k(p)) > 0, ξ̄k(p)) �= 0,

V2(ēk(p)) > 0, ēk(p) �= 0, V1(0) = 0, V2(0) = 0. Also, let a discrete counterpart of the divergence
operator of this function along the trajectories of system (3.7) be defined as

DV (ξ̄k(p), ēk(p)) = V1(ξ̄k(p+ 1)) − V1(ξ̄k(p)) + V2(ēk+1(p)) − V2(ēk(p)). (3.9)

The following result can be established.

Theorem 1. Assume that there exists a vector Lyapunov function (3.8) and positive scalars c1, c2,
and c3 such that the following inequalities are valid on the trajectories of the system (3.7) (where
|| · || denotes the Euclidean norm):

c1||ξ̄k(p)||2 � V1(ξ̄k(p)) � c2||ξ̄k(p)||2, (3.10)

c1||ēk(p)||2 � V2(ēk(p)) � c2||ēk(p)||2, (3.11)

DV (ξ̄k(p), ek(p)) � −c3(||ξ̄k(p)||2 + ||ēk(p)||2). (3.12)

Then conditions (2.4) and (2.5) hold.

Proof. In [26] (Theorem 1) it was shown that if (3.10), (3.11), and (3.12) are satisfied, then

||ξ̄k(p)||2 + ||ēk(p)||2 � κ̄�k, 0 � p � N − 1, k � 0, (3.13)

where κ̄ and 0 < � < 1 depend on c1, c2, and c3. Also it follows from (3.13) and the definition
of ēk(p) that

|ek(p)|2 � κ̄�k, |Δūk(p)|2 � κ̄�k. (3.14)

Due to the first inequality in (3.14), condition (2.4) holds with κ = κ̄
1
2 and ρ = �

1
2 . The bound-

edness of control (2.5) follows from the obvious relation

|uk(p)| � |uk−1(p)| + |Δūk(p)|, k = 1, 2, . . . ,

and the boundedness of u0(p) and the second inequality in (3.14).

Introduce the following matrices and vectors:

Ā =

⎡⎢⎢⎢⎢⎢⎣
A−GC 0 0 0 0
GC A 0 0 0
0 0 0 0 0
0 0 1 0 0

−CGC −CA 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , B̄ =

⎡⎢⎢⎢⎢⎢⎣
0
B
1
0

−CB

⎤⎥⎥⎥⎥⎥⎦ , C̄ =

⎡⎢⎣ 0 0 1 0 0
CGC CA 0 0 −1

0 0 0 −1 0

⎤⎥⎦ .

Then the following result enables LMI based ILC design.

Theorem 2. Suppose that for some matrix Q � 0 and a positive scalar R,⎡⎢⎢⎢⎣
X (ĀX + B̄Y C̄)T X (Y C̄)T

ĀX + B̄Y C̄ X 0 0
X 0 Q−1 0
Y C̄ 0 0 R−1

⎤⎥⎥⎥⎦ � 0, C̄X = ZC̄, (3.15)

is feasible for X = diag[X1 X2], Y, Z, where X1 and X2 are positive definite matrices of dimensions
2n × 2n and 3n× 3n, respectively. Then the ILC law

uk+1(p) = uk(p) + Δuk+1(p),

Δuk+1(p) = K1Δuk(p) +K2CA[x̂k+1(p) − x̂k(p)]

+K2CG[(yk+1(p) − yk(p)) − (ŷk+1(p) − ŷk(p)] (3.16)

−K2[yref(p + 1) −Cxk(p+ 1)] −K3Δuk−1(p),
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where
K =

[
K1 K2 K3

]
= Y Z−1,

ensures that the required conditions (2.4) and (2.5) hold.

Proof. Applying the Schur’s complement formula to inequality (3.15) gives

X − (ĀX + B̄Y C̄)TX−1(ĀX + B̄Y C̄) −XQX − (Y C̄)TR(Y C̄) � 0.

Further, using Y = KZ and CX = ZC, this last inequality can be written in the form

X − (ĀX + B̄KC̄X)TX−1(ĀX + B̄KC̄X) −XQX − (KC̄X)TR(KC̄X) � 0.

Multiplying the last inequality by P = X−1 on the left and right, respectively, and then rearranging
the terms give

(Ā+ B̄KC̄)TP (Ā+ B̄KC̄) − P +Q+ (KC̄)TR(KC̄) � 0. (3.17)

Let the entries in the vector Lyapunov function (3.8) be chosen as the quadratic forms

V1(ξ̄k(p)) = ξ̄Tk (p)P1ξ̄k(p),

V2(ēk(p)) = ēTk (p)P2ēk(p), (3.18)

where P1 � 0 and P2 � 0. Then calculating the divergence (3.9) along the trajectories of system (3.7)
gives that conditions (3.10), (3.11), and (3.12) will be satisfied if

(Ā+ B̄KC̄)TP (Ā+ B̄KC̄) − P ≺ 0. (3.19)

Finally, (3.19) holds due to (3.17) and (3.16) follows from (3.6) on using (3.1) and (2.3).

Remark 3. The system (3.15) is similar in structure to the relations of the linear-quadratic

regulator (LQR) problem in LMI formulation. The matrix K =
[
K1 K2 K3

]
depends on Q

and R, which are selected based on achieving the desired rate of convergence of the learning error.
As in the LQR problem, there is no complete formalization of such a choice and a heuristic approach
based on knowledge of the dynamics of the system under consideration is recommended.

For further comparative analysis, consider the most commonly used update law, see, for exam-
ple, [27]:

Δuk(p) = K̂1η̂k(p) + K̂2ek−1(p+ 1). (3.20)

Substituting (3.20) in (3.2) and applying Theorem 1 with the entries in (3.8) chosen as

V1(ξ̄k(p)) = ξ̄Tk (p)P̂1ξ̄k(p),

V2(ek(p)) = eTk (p)P̂2ek(p),
(3.21)

give the divergence

DV (ξ̄k(p), ek(p)) = [ξ̄Tk (p) ek(p)][(Â+ B̂KĈ)T P̂ (Â+ B̂KĈ) − P̂ ][ξ̄Tk (p) ek(p)]
T , (3.22)

where P̂ = diag[P̂1 P̂2], and

Â =

⎡⎢⎣ A−GC 0 0
GC A 0

−CGC −CA 1

⎤⎥⎦ , B̂ =

⎡⎢⎣ 0
B

−CB

⎤⎥⎦ Ĉ =

[
0 I 0
0 0 1

]
, K̂ = [K̂1 K̂2].

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024



826 PAKSHIN et al.

Repeating the derivations from the proof of Theorem 2 gives that if

⎡⎢⎢⎢⎣
X̂ (ÂX̂ + B̂Ŷ Ĉ)T X̂ (Ŷ Ĉ)T

ÂX̂ + B̂Ŷ Ĉ X̂ 0 0

X̂ 0 Q̂−1 0

Ŷ Ĉ 0 0 R̂−1

⎤⎥⎥⎥⎦ � 0, ĈX̂ = ẐĈ (3.23)

has a solution X̂ = diag[X̂1 X̂2], Ŷ , Ẑ, where X̂1 � 0 is a 2n×2n matrix and X̂2 is a positive scalar,
then the ILC law with the update term (3.20) and the matrix K̂ = Ŷ Ẑ−1 ensures conditions (2.4)
and (2.5).

Remark 4. The approach based on the heavy ball method leads to a new structure of the control
law (3.16), which differs from that in the known literature. If the parameter values ensure condi-
tions (2.4) and (2.5), then the update term, in accordance with (3.4), changes along the gradient of
the quadratic function of this term. In the case of the update law (3.20), this cannot be guaranteed.
Apparently, this property provides faster convergence of the learning error when using the control
law (3.16), but rigorous proof has not yet been obtained.

4. NUMERICAL CASE STUDY

In, e.g., [25], a gantry robot, specifically designed and constructed to emulate the pick-and-place
operation to which ILC is applicable, has been used to verify ILC designs experimentally. This
system has three mutually perpendicular axes, one of which X is directed along the conveyor belt,
and the second Y is perpendicular to this axis in the conveyor plane. The third Z is perpendicular
to the XY plane. The system is designed such that the interaction between axes can be neglected,
and models for control design have been obtained from frequency response tests.

Figure 1 shows the 3D reference signal used in experimental tests; the trial length is 2 s.

Fig. 1. The 3D reference trajectory.
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Fig. 2. The reference trajectory for the Y axis.

The transfer function for the Y axis is

GY (s) =
23.736(s + 661.2)

s(s2 + 426.7s + 1.744 × 105)
, (4.1)

and the reference trajectory for this axis is shown in Fig. 2. The sampling period for discrete im-
plementation is Ts = 0.01 s. The discrete model has been constructed using the standard functions
ss and c2d of MATLAB. The corresponding matrices are

A =

⎡⎢⎣ −0.0762 0.0487 0
−0.0732 −0.1372 0
0.0033 0.0026 1.0000

⎤⎥⎦ , B =

⎡⎢⎣ −0.0006
0.0134
0.0001

⎤⎥⎦ , C = [0 0.0116 7.6631].

Evaluation of the performance of an ILC design must consider trial-to-trial error convergence and
performance along the trials. The latter of these can be evaluated using standard measures for
each trial. For trial-to-trial error convergence, one commonly used measure is the root mean square
learning error on each trial plotted against the trial number, where on trial k,

E(k) =

√√√√ 1

N

N−1∑
p=0

|ek(p)|2. (4.2)

The observer parameters have been found using the results of modal control theory, imple-
mented using the standard function place of MATLAB. Assigning the eigenvalues λ1 = 0.9 and
λ2,3 = −0.1 ± 0.01i for the matrix (A−GC) and applying this function give

G = [−0.3070 2.6427 0.0073]T .

According to the problem formulation, under the assumptions made, any observer matrix G for
which the eigenvalues of (A−GC) are inside the unit circle accurately reconstructs the state
vector. Therefore, the eigenvalues have been assigned to make the observer gains (the entries in
the matrix G) relatively small.
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Fig. 3. Progression of E(k) for the Y axis with Q = I and R = 1 for (3.16) (solid line)
and (3.20) (dashed line).

Selecting Q = I, i.e., the identity matrix of compatible dimensions and R = 1 and applying
Theorem 2 give

K1 = −1.09 × 10−7, K2 = −1196.0, K3 = −1.61 × 10−8.

For this case, the ILC law (3.16) reduces the learning error by 105 times in one trial, and after 8
trials, this error has reached numerical zero. For comparison, the ILC algorithm with the update
law (3.20) gives an error reduction of 1% for 70 trials (Fig. 3).

In this case, the control law parameters K1 and K3 are very small, and numerical investigations
demonstrate that a minimal change will occur if they are set to zero. Hence, the ILC law with
the update (3.20) in which K̂1 = K2CA and K̂2 = −K2 is obtained. Thus, applying the heavy
ball method imposes restrictions on K̂1 and K̂2, under which a high trial-to-trial error convergence
rate is ensured. It is, however, difficult to use this feature to provide rules for choosing Q and R
for a given example. Establishing a connection between the convergence rate of the learning error
and Q and R is an open problem. (It is possible to select matrices providing approximately a
10 times lower convergence rate but at the cost of a significant computation time.) Considering this
feature, reducing the convergence rate by decreasing K2 and checking the LMI (3.19) is possible.
In practice, this may be important if actuator saturation is possible, leading to the need for a
compromise solution.

For K2 = −50, the convergence rate decreases by approximately 80 times relative to the result
obtained for unit Q and R in (3.15), however, this speed remains higher than for Q = I and R = 1
in (3.23) (Fig. 4); the control law matrices in the case of K2 = −50 and K1 = K3 = 0 are

K̂1 = [−1.24 − 0.93 − 383.2], K̂2 = 50.0, (4.3)

and, in the case of ILC with the update law (3.20) with Q = I and R = 1

K̂1 = [−21.8 − 18.4 − 7465.4], K̂2 = 1.9. (4.4)
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Fig. 4. Progression of E(k) for the Y axis with Q = I and R = 1 for (3.16) and K2 = −50
(solid line) and (3.20) (dashed line).

Fig. 5. Progression of E(k) for the Z axis with Q = I and R = 1 f (3.16) (solid line)
and (3.20) (dashed line).

The linear matrix equations and inequalities have been solved as before but use is also made of
the YALMIP parser. Analysis of (4.3) and (4.4) shows that, in the absence of structural constraints
on K̂1 and K̂2, SeDuMi’s internal algorithm finds a solution in a domain characterized by a low
convergence rate; at the same time, the constraints imposed by the heavy ball method direct the
solution to a domain with accelerated convergence.
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Fig. 6. Progression of E(k) for the X-axis with Q and R given by (4.5) for (3.16) (solid line)
and (3.20) (dashed line).

Now consider the ILC design along the Z and X axes. The transfer functions, for these axes are

GZ(s) =
15.8869(s + 661.2)

s(s2 + 707.6s + 3.377 × 105)
,

and

GX(s) =
13077183.4436(s + 113.4)(s2 + 227.9s + 5.467 × 104)

s(s2 + 61.57s + 1.125 × 104)(s2 + 227.9s + 5.467 × 104)(s2 + 466.1s + 6.142 × 105)
.

To construct an observer along the Z axis, the same approach as in the previous case is used, with
the observer poles taken as λ1 = 0.9, λ2,3 = −0.1±0.01i. Applying the place function of MATLAB
yields

G = [−0.405 − 28.01 0.078]T .

Theorem 2 with unit Q = I and R = 1 gives

K1 = −6.33 × 10−8, K2 = −2.673 × 103, K3 = −8.33 × 10−9.

The simulation results are given in Fig. 5.

The observer poles along the X axis are selected as

λ1 = 0.95, λ2 = −0.4, λ3 = 0.4, λ4.5 = 0.4

(
cos

π

3
± sin

π

3

)
, λ6,7 = 0.4

(
cos

π

3
± sin

π

3

)
.

Applying the place function of MATLAB yields

G = [38.1 40.161 − 44.093 15.913 − 16.428 − 12.67 0.309]T .

In this case, Q and R are selected as

Q = diag[I 10I 1 1 1], R = 1. (4.5)
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Fig. 7. Control progression along the X axis using (3.16).
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Fig. 8. Control progression along the Y axis with the update law (3.16).

Theorem 2 gives

K1 = −5.715 × 10−9, K2 = −1308.2, K3 = −6.868 × 10−10.

The simulation results are given in Fig. 6. The control inputs for the X, Y, and Z axes for (3.16)
are given in Figs. 7, 8, and 9.Note that the learned control on all axes is achieved rather quickly:
after three or four trials, the controls on the axes do not change depending on k.

According to Fig. 5, the convergence of the learning error to numerical zero is achieved after
several trials. A different picture is observed for the X axis (Fig. 6): E(k) decreases by 107 times in
four trials, then the convergence rate decreases, and numerical zero is achieved only after 107 trials;
at the same time, this rate significantly exceeds the convergence rate of the alternative algorithm.
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Fig. 9. Control progression along the Z axis with the update law (3.16).

Thus, in this example, the ILC design using the heavy ball method provides a high convergence
rate that cannot be achieved by the alternative method. Note that for all three axes, K1 and K3

have quite small entries. Whether this is a general property of the new design, or is it related to
the peculiarities of the dynamics of the system under consideration, remains unclear and requires
additional research.

5. CONCLUSIONS

The ILC law (3.16) differs from those known in the literature in the special structure of the
gain matrices. Judging by the simulation results, this structure is the main factor accelerating
convergence. In the case of unstructured matrices, such as (3.20), it is probably possible to achieve
high convergence rates, but this will demand a time-consuming heuristic procedure for selecting Q
and R. Thus, it can be preliminarily concluded that using the heavy ball method gives an ILC
law with a high convergence rate. The final conclusion requires a strict justification, which has not
been obtained in this paper and will be the subject of further research. In the near future, the use
of conventional gradient descent and Newton’s method will be considered in ILC design; perhaps,
the resulting ILC structures will provide the key to a general proof of accelerated convergence. In
the longer term, it is planned to study the use of the conjugate gradient method and Nesterov’s
method.

Overall, there is much room for further research in this general area.
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